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ABSTRACT 

WC discuss the turbulent motion of fluid flow by using the renormalization 

group to solve the stochastic field theory of the velocity field vjE, t). An “anti- 

velocity” field is introduced to enable us to give a Lagrangian density for the field 

theory, and then this density is utilized in the definition of the generating 

functional for velocity correlation functions. This generating functional contains a 

stochasticity parameter, a, in such a fashion that when a +O the fluid motion is 

deterministic. This parameter plays the same role as fi in the stochastic field 

theory called quantum field theory. The renormalization group analysis is carried 

through in detail for a mixing of the fluid which uniformly stirs all modes in wave 

number and frequency. In such a situation we show that the energy spectrum 

function .E(k) behaves in three climcnsions for large k as a constant and for small k 

as kmp where p is a universal dynamical index dependent only on the number of 

space dimensions. It is zero at D = 4, and in an expansion about D = 4 we find to 

first or&r p = - Z(r;-D)/y. 
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1. INTRODUCTION 

Homo~cneous turbulence rcprcscnx an abstrsction from the actual more 

co;nplex turbulent motion encountered ia nature. Yet as a mathematical model, 

often realized in practice to excellent eccurac)‘, it has proven amenable t0 

extensive and profound analysis.’ Even in the idealization represented by 

ho.nogeneous turbulence the non-linearities in the Kwier-Stokes equation has 

remained a formidable barrier to thz quantitative analysis of turbulent dynamics. 

Since it is agreed that turbulence is the random motion of a velocity field, vj(< t), 

the non-linearities exhibit themselves in the coupling of nth order correlation 

functions of the velocity to n + I” order correlations through the inertial term, 

vo&,vj in the Navicr-Sto’kes equation. The “closure” proMem of these velocity 

correlation functions has remained a central difficulty of the theory of tur- 

bulemz2 

This feature of closure among different orders of correlation funclions is a 

common aspect of stochastic field theories with non-linearities in the governing 

equations. In the quantum theory of fields as encouatcred in particlc physics3 and 

many body physics4 as well as in classical statistical problems sxh as phaK 

transitions’ the equations among the corre!ation functions faii to close thus making 

the theori.3 csscntially intractable to exact anslytical solution. 

In such a situation a large variety of epproximntion techniques have arisen, 

many cf them rxwc or less identical in thz various subjects mentioned abovc though 

they tend to carry dilfcrent names. One o! the more elezaat type of approximation 

has been to rcsum the perturbation sz;ie: in an cxpaxion in the non-linearity to 

give cxacf, no:vli;lcar equations amon; t:,e “renprmzlizcd” correlation function. 6-9 

Then these cquatizms are truacated and salved as well as pzssible. The “direct 

inlwxtion” approximation is typical of sxh a prkcdure. 
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This pap” trmts the stochastic field tieai; of vj(z, I) by use of the 

rcnorm;llization group. IO This tcchniqx e!l~<:s one t3 &riie ciact constraints on 

the allowed form of the nth ordx vcloci;y cxrel?tiox functions and to extract 

exact stat.:m:“ts about their behavior i;l both the shart dista”ce (large WWC 

“umb+r) and long distance (small wave number) rc@es. The renormalization 

group may “at bc familiar to all workers in the th:o:y 01 turbulence jo a 

pedagogical introduction to it will bz included below.” In essence the 

renormalization group nates that the parameters specifyin; the non-stochastic 

theory, for cxamplc, the viscosity, vo, are replaced by functions of xvave number 

and frequency by the fluctuations in the slo:Sastic th-ory. One may define -- 

renormalized parameters, say v, by evaluating thus: fmctionr at some standard 

wave number, kN Then requiring the pSyslcal cantea; of the theory to be invariant 

under changes in kN, which is arbitrary after all, gives ris- to constraints on the 

allowed form of the correlation functions. 

An important example of these constraints is given by the consideration of 

the energy spectrum function E(k) defined ia 0 spxe ad ox time dimension via 

I T (012) EC!!) k.k 
-- 
D - 1 2 ,D/2 

(6. -A) = jdDk eik- cxj(;,t)ve(", T)> . 
kD-I 1e k2 (I) 

fn a theo;y u)l~cre the medium is uniformly, thou;;h r;ndonly, mired in wave 

wdmbcr, the renormzlization group predict; that fo: k-*3, i.c. long wave length 
e 

turbulence 

E(k) CI v2k 
k-0 



,“hc:e 9 is J un?er;:gl numrricnl ind:x ahi@) depends 0lly 0” the nu~nb~r 0f 

dirnenricl& s7;1.:c and irot on y or kN or t!le strcnzth 01 the stirring force. 11 we 

introduce the urual viscous cncrgy dissipation pars:neter 

8 = 2” j0k2E(kMk 0) 
0 

q Sk 4 ~ xkonstant) ) 

then (2) becomes 

(4) 

Determinirg p exactly may be tantamount to solving lhe field theory exactly. 

Several techniques have ken dcvelaped to evaluate it approximately.” One of 

these, which we shall explain in detail below, notes that at D = 4, p = 0 and tries an 

expansion in c = 4 - D. In first order of this expansion we will show P = -2~19 

which implies t\at zt D = 3 

E(k) N k+2’9 . 6) 
k+!l 

The cxpznsion in E is surely asymp:otic, tholgh cxpcri?nce indicates it is very 

*ccuI’.3ic for E = 1. 

For I,~rcc k tir form o! E(k) is given by th: r;norma!izati~~ group to be 

CO”St2”t + 0(--I- 
k4 - D 

) (7) 
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or at D = 3 

EC<) -’ constant + ‘)(llk) - 

These results indicate that the familiar Kolmq.~rov behavior 

E(k) * g213/K5f 3 

(8) 

(9) 

does not haId Precisely fo: any k when the medium is mixed as described. 

The Kolmogorov spectrum is suppared to hold for a turbulent me&xn 

predominately mixed at low wave numbx, so it is “St a surprise that it doesn’t 

apply here. In a subsequent paper we shall tree: the more physical situation where 

the medium is mixed in wave number space with the s;rength ((kL)* + I)-‘, where L 

is a characteristic length for the mixing and x is ~~~* l*%e Power. This mixing 

spectrum is thr sane ax the one treated here for k’ 0, bui is cut off at large k; i.e. 

in the inerlial and dissipative regimes. So the results for k + 0 will be thz same, 

and we will explore in detail the interial raze. Th: uniform spectrum treated here 

will then provide the most easy introduction ta the use of the renormalization 

group as well as illuminating the character of the smzllk regime. 

In the following we begin by a detGled s~zci:ira!ion of the stochastic field 

theory ap?,ro$riate to the non-stochastic Nzvie:-S:ok:s equarion. Then tltc pxtur- 

bation series for this field theory is analyzed; 111: dimrn:ionlcss expansion 

parameter is, as usuc4, the Xeynoldr number. The spxial role played by D = 4 will 

emerge at this pint. Next WC discuss the rr.... -?-maliia:ion s:hane for the 

stochastic field theory and introdtlcc the renor*;1?li;:a!1an group. After rrtracting 

the general statcrnnnts about vclociry correlatio:) lu:.;:ians which 1o;low from the 

renormalizatia> group, we d-rive (21 and (7). A discwi!xti of results ends the pap-r. 
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,I. STOCH,ISTlC FICLI, TI IEORY FOR TUMULF..UC[: 

vce ~‘2”; to discuss the sto~hxtic behavior of ti:n velocity field vj(?, 1) which 

utisfier the Savier-Stokes equation 

ad;, t) 
+ = “V %(;’ t) - Yfi, t)vpvjG, 1) - $ VjPG 1) + fjG, t) (IO) 

in the p-esecze Of 3” exte;nal force 7. As usual we will take an incompre&ble 

fluid 

ViVj(< t) = 0 (11) 

which w-i!! +!Iaw us to eliminate the Prcss’ve p. Now vi satisks (10) in the absence 

of st&z.:ic beinavior, and WC want to formulate the stochastic Iicld theory of V. J 

in szxh a way that (1) when a certain “stochastici:) pxameter.” called a here, 

tends TV :ery (!O) holds precisely,and (2),for any value of a, (IO) holds in the mea!. 

l-his is accomp!k\cd in the folkwing steps. Introduce a Lagraqian density, 

9’ , sl;cLI 53: the stationarity of the action 

jd%dt y (12) 

yields tk c;:ztions of motion above. To construct this Lagranze density we must 

intra&sZe i- dfitkm to vi an “anti-velocity” Tj since the Xavier-Sto!<es equation is 

fin:ar in ti;?e derivatives. V/C will thea write for 9 

- s?= %TjYpi +“vr;jvr”j 

- v,l(t. ,e W"' f) D(PNLi;lYL\." +qxing (131 
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where 

A+ = A(+) -(.$) B , (IN 

and 

djL(4 = .sjiAV 
$72 1 J. (IS) 

is a shorthand notation for the operator indicated. A- 
IL 

arises when we eliminate 

the pressure using Vjvj = 0. Strictly spezkiq we should enforce the condition 

Vjvj = ViTj = 0 by either a Lagrange multiplkr in (13) or by replacing vj(;,,t) by 

4 f’,ve 6, t) and Gj by qe i; evcqwhere. This would significantly complicate the e 

notation and not be very helpful, so we’ll use the abbrevia:ed version shown 

The external force term is contained in the miring Lagrange density. We’ll 

take the external force to be a Gaussian random field with correlation function 

< f$, t)fj(;, T)> = qjcmo- ;, t - d (I6) 

and ?$ixiw wi~ll bs 63 

.?$irinp = - ET+:, t) j dDydrk,L(VJ% -;, t - T$(;,T) . (17) 

For the greater part of this paper we r:ill discuss a stirring of the fluid which is 

unilorm in wave number and frqxncy space. So we t&e 

rc; . (18) 

The Lesrange density reads 
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9. “;jrt”j + VvLTj vevj - $ ;jAjpv’e 

-Kf(4,(P)Ve+A. 
12 

(9vrj.j~ y 
“I in 

(19) 

At this stage we are still dealing with non-stochastic behavior determined by 

tJJe Euler-Lagrange equations 

which are just (IO) and a similar equation for yj. 8%~ stochastic nature of the 

~~@KICCSS may be most compactly introduced by giving the gcncrating functiwal 

Z( ni’ fij j for the velocity (and”anti-veloci;y’) time ordered correlation functions 

< T(v$:, , t ,)...“jn(:n, tn6k,(;,, ~,)...;k~(;~. T”.))’ . (21) 

2 is expressible as a functional integral 

2 I y fij I = N j 8 
x.t 

d+, t)6( V,,‘,(:, t)) +” 
Y,T 

dTk’; T 16( V .&(;, T 1) 

i k 

x exp -i f dDsdti%j, ;k’ + nJ(:, tfvi(:, 1) 4 ;,(:, t,,,(?, 111 , ml 

where N guarantees Z( 0, 0 I = 1. l~hr p;lramz:er a is the stochasticity variable 

relerrcd to above. When a * 0, the oilly field confi:ura:ions which contribute to 

2 I ni, ?ij 1 arc those for \s.hich the cxponcn: in (22) is s:~tianary 

dg: - ,,. 
5. and 

I 
I@ -;i 
T”~, 3 (24) 



-9- F~R:.IIL4D-Pub-?SILS-THY 

which are the non-stochastic equations with ertcrn;tl sxrccs qj and Fr Since 2111 j, 

%j 1 is unchanged when we chan;c the intcgatix varizilcs vj ~lnd vj to vj t 6vj and 

vi + 6yj respcctivcly, we Iicd by expanding in 6vj and 6;. 
J 

dy 
c&y > = -nj 

1 

(24) 

for any a. The mean, exprcswd here by 0, signifies 

4(vj,vi)> = N i dvjd;j”(vr;j)cxp - i I d%dr [% njvj; j;j$ (Vj,~j)S(Ve;~ 1 (25) 
c 

for wy functional of vi and 3 Eventually WC zre interested in lj = Kj = 0 for the 

correlation functions of vj and vi alone. 

The stochastkity parameter deserves a word of comment. It plays the same 

role here as does Planck’s cunstant 6 in quantum theory. We undxstltnd this as 

follows: when )r +O, th?re are no quantum fluctuations in thz system, it is pur&y 

classical and deterministic, that is, non-stochastic. In the operato: fornxlation of 

dassical statistical dynamics as discussed in Reference 6, the commutation relations 

of vi and yj would be 

I”$, t), T& t) 1 = a 6% - ;) $ e (26) 

which agzin shcw~ the role of a. II quantum thwry a is replaced by I? in (25). The, 

dimcxions o! a, as is also true 01 K xc thaw of rh- action (12). \:‘itho;lt further 

cnmmcnt we \vill most often simply sCt a E 1 and <a XI: dir:::nsio?al analysis in 

those units. II one kc?; a thrnuclwut, it will COWI: !h? clas?d I?z?s appearin; in the 

graphical Iorm 01 the pcrturbaiion t!wor) in Rcynulds’ n~mbc: to bc dcvcloped 

below. 
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A useful expression for the Reynotds’ nurnbcr, which we will caU g, may be 

extracted from the Lagran.gz density (19). g is given as 

where v is the “size” of the velocity vj(:, 1) and kN is some standxd (length)-’ or 

slave number. In the situation where the turbulfnt mediun has came to equilib,;ium 

the enc:gy input $7 2 . # I 1s essentially balancing the viscous dissipation, v k N2v”, so 

” 5+ (28) 

YkN 

From the dimensional analysis of the aclion, or consideration of the commutation 

relation (26) we condude 

VT = kN% 

leading to 

D-2 

Y = zkNy fi 

and 

, 

D-0 

g=%kN 3 
7, 

(29) 

00) 

(30 
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It is important to notr timt g bcco-;~c; independent of kx at D = 4, that is at 

four space and one time dimension. V<hcncv:r the dirncasisnlzss parameter 

characterizing the non-lincxitics in a stcchxtic Ilc:d theory bxomes indcpcndent 

of scalz, the behavisr of the correlation functions bxxmes quite simple in ei:hzr the 

large k or small k lilnits. Furthermore at th+: spece dim?nsisn, the series expxubn 

of correlation functions sho;vs logarithmic divergcnxs and requires infinite 

renormalizations as occurs in qantum elc:trodynamlcs. 3 This fact, on thz face of 

it would se&a to have ,no particular relevance to thz real world at D = 3 which is our 

concern. However the SCJIC invariance of the D = 4 field theory renders it, in many 

ways, much more tractable than theories with D ~‘4. Since 5.0.~ form of 

renormalization will bt necessary when we expand in g, it api>cars convcnien: to 

chxse that renormalization procedure sa ar to rendx the D = 4 theory finite. The 

theory at D = 3 is always finitz and ncels only finite renormalizations. Having 

chosen this route, we will find it both p?ssib!c and conven;ent to expand certain 

quantities in the D = 3 theory about their value at D = 4. An example of this is the 

energy spectrum index 0 discussed in the Introduction. p I 0 at D = 4 and a series In 

powers of (4 - D) scxns sensible. 

Clearly the precise method of rcnormeli~ation nwst not aIfcct the physical 

results we dxive from our Lagran:c density. Weed it is thz invoratirrn of the 

reno:ma!izatisn group which will bc crucia! ia this by te:ling us whzt constraints on 

thz carrclatiun functions must bz met to guarza:cc ~i;r;~endznce.pI the rcnarmnali- 

zation prorcdurc. 
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III. PERTURIIATION TNEORY AXD F.ESORh!.~L17,ATIOS 
FOR VELOCITS CORRELATIGS FUSCTl3XS 

In this scclion we want to give the rules for c;llculatin:: the velocity 

corre1ati.w functions (.?I) by expanq:on of Zi q,, xi ] in powers of T (or of g). TO 

this end it proves to bc useful to rrrctrlc lhc velocity as 

Xj(:. tl +, WY* 

-+ 
Xj(X, t) = y$ ,(;, t) * 

when the Lagrange density becomes 

OZ 

.5fcxj,~j) = li XjSrXj + YoVexjVexj 

-YlSi;.a 3( 
I 11 1 

+ AjaCJ’Vn’rij 1X,X . 031 
” 

From this 2 and the gcnxating functional (25) we can derive rules Ior a graphical 

expression cd the terms in the expansion in To of the correlation function 

‘!“,d 
I,... in,j ,... jm 

6 + l, Wl,...kn.Wnv ql, * ~l,...;m. n,) in wave number, frequrncy space 

nrnj 

= j d’x,dt ,... d%“dt,,d’y,dr ,... d’y,,,dr,,, x 

<T(x. (x I’ ) t 1. .,q. 6”. t )j. (; ,T ,L.X. L, 1 1’ In O‘J, J 
. 04) 

J,ll 



, 

TO 

where 
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Thex rules sre as follows: 

I. There are two kinds of 2nd order correlation functions ia zerozth order in 

a) jd’xdt c -ii.‘+iwt cT(~~(~, t)x:Q(3. 0)’ 

2 D? (?,LJ); 
Ii 

o+ * -1 
DjE(k9 w) = Aj.E”‘(iw + “*<Z _ cl 

(ia - Voi;’ - C) ’ 
(35) 

b) ld’xdt e 
-$.;+ixt 

c’C+ t&(0, ON’ = F;(i;: u); 

o* + 1 
FjL’4.“d’ = Ajik)_io +voz2, E 

4 $4 = bjr - kjke/kz , 

(a 

(37) 

and the limit t * O+ is understood after all calculations are done. This ax.urcS 

proper retardation. T!wrc zeroeth or&r correlation functions (oItcn called 

propagato;s) n:e rcprcssnted as in Figure I. A dotted line rcprcse;l:s a x while a 

solid line rcprcscnts ax . The axoivs on the line zr c ncccs~ry because of the 

structure of 1112 yxx term in .Y . . 

2. Tbcrc is one kind 01 vertcr ~vhe:e two solid lines join to a dotted line. 

This i&on vxter is asoziatcd with the factor siren iil Figure 2. 

3. At any given order ofyo drasx 211 toPo!o;i~ally distinct graphs constructed 

0”i 0: DO, a0 I- , and the vcctcx ill Fizwe 2. 
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0. Intcgate jdDqd.u around each clvscd loop. 

5. Ar each vcrtcx conserve; and w. 

6. With each graoh associate a \veinht 1 exceot for closed 1000s containis two 

D. ’ lines: these have weight Ji. See Figure 4. 
IL 

7. Some graphs will vanish bxause of thkz retardation prescription in itein 1. 

Fcr enanple, the graph in Figure 3 is zero. 

These rules may also be derived by considering the averages <x.,.7> directly 

at ni = nj = 0 as in (25) and noting that each term in the expansion in To is of the 

form of pavers of x and x integrated with exp -Mx:~).f 1TJ 
I’,& 

The invcrr of 

the mst;ix Al-1 IS composed precisely cf the two point correlations Do and F” &n 

expressed in&w space. 

0 0 
The Iswest non-vanishing corrections to D , F and the vertex are given in 

Figures 0, 5, and 6. Indicated also are the cwdntin:, factors to be arsociatcd wi:h 

cxh graph 

In doin; the pzrtxbation theory we wiI1 modify the “bare” correlation 
(2,O) 

iuxtizn DyL6,uW, into tic full velocity correlation function GojL $,o , ~o,~o) 

which is given as a power series in r,. Similarly F! 
12 

will bxornr the full 

G$“i< +yo,$. Each of these must be ‘pro?ortional to Ajedl bccwsc of the 

trzxvrrse xturc of the velocity field, so it is useful to 

an~~“~%2,w,y 
0 

v ) by 0’ 0 

c~~q&,yo,vg) = b),Gti;‘“)i:2,w I Y*PV*) (3s) 

and 

G~fi” i, q To, vo) = 4e~)~(‘l’)ik2, j), To,” ,) . (33,i 
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‘Shea To = ,, ,,,= ha,,&?kl!-’ = iw t ,dok2 and :IIC o!xiou: cuprcsrion :or~ol ,.@$I rjbI 
’ 0 

When WC have calcdated,~* 
CF<Z,O) andp’l) xr) as high an order of -ro as we 0 

desks, the ,.J and c2 behavior will be \‘ery cornp!icated. U’c may continue to 

parametrize that behavior by vo and To or we may choose to rcnormalize the 

theory by defining effective (or rcnormalizcd) yxemerers v and y in some manner. 

For D < 4 all the integrals ap,?zaring in the serifs in To are finite, cxccpt possibly 

at wi,li = 0 sirnultanzously, and \;.e are not required to rezormalize in this fashion. 

At D = 4 ereky integral in Figures 4, 5, and 6 is lo~ari:hrnically divergent and we 

must find a way to define the theory there. 

The central exercise in this paper is to explore the consequences of 

renormalizin~ and rcquirin; that the physical reslilts of th? theory as embodied in 

the G(“T”) are independent of how this proredurc is carried out. As we will see 

this path will allow us to deriwz constraints on th= C . If we were able to solve hm) 

the theory exactly, thcsc ,constr;lints must be identities. In any approximation 

(n,m) 
scheme they will limit our attention lo forms of G consistent with the general 

structure of tSe theory. 

The actual method we will choose for defining our renormalized .quantitics 

hm) wi:I guarantee that the correlation functions G are finite at D = 4 when 

expressed in terms of those renormalired ~XZXC;C:S. This ?rescription will be 

cowenient and practical v:hcn we come to extr~i cx?!isit conscgxnccs of the 

rcnorm2!ization group. 

\Ve adopt the follov:ing multiplicativ? rcvrm?lirarion :)rocedxe: Rescale 

fhc qtmntiti:s ~oi,~oi, vo 2nd Yo by dinrznsiox:zrs fxtws 



x*p, t) = z”xjG. t) (40) 

,,c, t) = z”yj(;, t) (41) 

YO 
= 2;‘” (42) 

-1 
Yo’Zy Y (43) 

Determine these factors by requiring that the 

satisfy 

a @1,1+~2 
-52 ,w.“.y,uN)- 

I 

‘= -1 , (44) 

fi*=0 

WWN 

2 ~(‘)‘l(ff2,1LI,Y,r(WN)-’ 
aP 

I 

=v , (45) 
PZO 

OWN 

~~~2,0)(~2,~,vry,oN)-” 

I 
x2=0 

= 20N . (461 

“Wh’ 

Noting that the vertex has the general expression c,oj(k).‘, 

&w1,9;, I+) with the lowest order term being 

0 + -iy 

‘jng(‘, W; <IS “1, if2, 02) = $p~l i 6,“k; t 6j2knI , (47) 

a 2 

we require of the rcnormalired X ,“e(C 4,’ q2’Y’Y’+ 
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-iY (4s.i 

I;c+22=o =q - 

w:2wl=2>2=wN 

Since @m)-‘= ,@*m)-~, (74) will dcter~~in: z and by construction 

2 : 1 + O(yo2). Then (45) determines Zv, and (461, z. Finally Zy comes from (4s). 

The indicated proccdxe is therefore 10 calcu!zte. ~~~“‘,~~~‘), andr ? to 
I”1 

some order in y,. Dztermine the Z-factors using these conditions, a.?d then they in 

turn define’ the renormslizcd correlation functions. The necessity :o deIine only 

four rcno:malized quantities comes from the ectu?l structure of the La:ranzc 

density whxe only fox terms in fields e>>zar. It takes ar! enormxs efiort to 

demonstrate that the four conditions we have given are i:,deed jcs: u,k.?t ox needs 

to define a finite theory at D = 4. (For the exa.mple of quantum e!cxrcdynamics, 

see Reference 3, Chapter 19.) The adthor has no; carried this 3,: ia detail but is 

confident it can be don:. 

WC close this wction with an import-nt o!xzrvaYion on t11z !icld renoxnzli- 

zation factors 2 and z. Because of the rno~~en;~~.~ de?aAnce @f the vertex 

(Figure 2) or equivalently the derivatives in the non-linear term in9 the functions 

@:,o))-l end (#t*‘))-’ can be written 

@!9’))-’ = -iw + i2(vo - LOG’, 0)) (49) 

and 

+@JZS~)-~ _ (iuI i:2(vo _ zo(Z2, 3)); i-i,, - t2(vo - To*(Z2S W))i . (5)) 
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Since Z, f are evnlu?trd by taking drrivL:i\,es with rcsp~ct tow and ssttinz w = wN 

and !? = 0, IZ =f = 1 unless 2, or u. is si!lgu!x. In nny order of prturbation theory 

they arc regulw away from the p3int c2 = 0 : W, 50 it secrns 7dit.e likely that 

2 = ?! = 1 identically. This is a useful algebrsic simplicity of the given 

renormalization scheme. Furthermore, since the momeiltum ~tructwe 01 the 

vertex is dictated by the solenoidal nature of vj and 7. this renormalization scheme 
I’ 

takes maximum advantage of that cons?raint. 3ne muit b: cautious, however, not 

to. suppose: the limit uN +O is innocent. Most of the expressions we write in 

perturbation theory are singular therz (ail infrared or long distance sinzu!arity) 

since Do and F” arc singular there. Indeed, the utili?y of WN f 0 will come when we 

vary it in the vicinity 01 w,~= 0 to cxplare the infrared structure 01 turbulence 

which is incomplctcly revealed at any fini:e order of To. 



-19- I~EII:.IIL.‘II~-Pu!,-?S/~S-T~~Y 

.IV. THE REN~I::IALIZATICW GROUP 

\V& bcSin this section \vith some’ urcful di.n?nslnal analysis. If we choose 

units 50 a r I, the action (I?) is dirncasionlcss. Let us assip dimensions of 

k-l . = mverse wave number to position, ;, an< LI -i to time, t. Then from _ we 4” 

learn 

191 = kD” , ISI) 

[,,, = kD4,-l12 . 02) 

ri, _ ,1/2$‘/2 , 

[VI = wk-’ , (54) 

and 

_ (‘22 ) 

[y] = Sk 2 . (55) 

where [I tneans dimension of enclosed quantity. Fro,;l this we learn ~\at usicg the 

ingredients of perturbation theory, that is, y, u, and 5’ K, the only dimensionlas 

parameter is 

If WC introduce kN as 

UN = VkN2 , 

D-4 

g = (ylv3’%v~ , 

(16) 

(57) 

(58) 
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which is just the Reynolds’number ‘UC dcfincd above. 

\I’e may return to the actual velocity cxrcl~tion functions, called 0 (“,“I) 

from tJr,- GcnBm) given above by 

d”4iri, ai, v, g&J d = (:) 1 “-“k(“‘m)&i’~ -,a,, g, a,) 09) 

= -f 
0 

“-mG (n,m) -t 
7 0 (ki. y, “,. Y,) , (60) 

where we have used 2 = f r 1 in (60). {Tensor indices arising from the vector 

nature of vj or xj arc suppressed in this section. ) Kow Go h,m) 15 the full x.,y. 
J J 

correlation fuxction calculated to all orders in yo. On tie Ic:t hand side we have 

(“‘m) the renxmolized velocity correlation. If we change c+, Go is unakred, since 

it never heard of a,,, as it was evaluated directly from the sxics in y,. However, 

both y and Y mast change so that m-“J”,rn) y IS unchanged. This rnoax 

d (n,m)+ 
WN d-0 

TN 
(kiwi, u,, y,, 

I 

-0 , (61) 

v,, y, fixed 

+A(g)&+P&& ICC ,(“,“I) .? (y.t+\~,gu N! = 0; (62) 
3 

where 

I v,,y, fired 

(63) 

and 
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I , v,.y, fixed 

(63) 

This leads to 

.a + A(g); + B!& ;u + C,,# hi 9.4 3 
0 w+ i, V) g,u N) = 0 (65) 

where 

C ,,,$I = (m-n+-; +B(&+ +A+] (66) 

Equation (62) is the renxmelizatisn .youp equation. 

TO cast this equation into a useful form we want to remwe the derivative 

from uN to the wave numbers $. To do this first replscc mN by kN2 using 

uN=vkN2 and note 

%& = [-%pN2a* t (67) 

+zwc (9, 
J - Or9 3 

,(n,m) * (kia i,v ,s,kN2) = 0 . (58) 

h’cxt use the dimensional analysis &ove to learn 

[&n&j = kD(i-n) + m-no I-2m , 

so we rney write 

,h,m) :- (,<i,wi,,, , e, k,2) _ v J-2m(kN2)1-a+3m) + D/2(1-n) x 

(691 

* c;,,q$ I 2 k) 
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where 0 n ,” is a dirncnsionlcss function. This allows us to express 

O(nsm)(< k. I’ u,.v > s, kN2) = F. D’2(‘-“) + h-n)‘2 &*m)&i, wi, cv, g, (k,‘)/:) . (7,) 

This irnmcdiately implies 

5 
cx o ‘“‘“‘(&;, wi,v , g, kN2) 

a p2-L 
+‘%-‘N ak 2 

,(-+ 4 !T w 
1’ ,,w,kN2) = 0 , (72) 

N 

with 

& = I* (7 4) 

ad 

7” ,,k) = 
(m-n)(2-D) + 2D(1-n) 

4 --- + $-$ (1 + B(p)/2 + A(&,) (73 

Now we have an equation for the variation of the v&city correlation functions 

with wz.vz number. The soIution of (73) is 

,h,d 
(K$ q,v, s. kN 2, = .@%;, ui, ;(-10:: 5 1, ;(-!og 51, kN2) x 

0 
x CXP J 

-log c 
duy&&)) (71) 



whcrc the “running” Reynolds’ nwn’~cr $11 and “runnia;” vi;cosi!y satisfy 

d&l 
du = - (I (&)) I 

and 

1 d;(u) - = _ 
\;n du 

(77) 

with boundary conditions a’l) = g, <CO) = v). 

We can USC this result to study the zi behavior of the v&city correlations if 

we are able to deal with the ordinary dlfferentizl equations (77) and (78). Of these, 

the equation for &I, the effective Reynolds num%r is crucial. If, for example, for 

F + 0, g(-log 5) +srnall numbci, thx (73) :ells us that we may determine dw) by 
.b 

a erturbati3n scrics in the effective Rerno!ds’numbcr for small ki. -. 

Suppose WC calculate a(p) in a pxtwbation series in 6 and discover that a(g, 

has a zero at g = S, with pasitire slope 

aw = “1(: - g$ , a, ‘0 . (79) 

Then for pu = g, we may solve (77) 

g(u) = g, + (6 - g,)e-=l” (SO) 

&13g.c) = g, *(g-g,){ a1 

U’hcl, r. * 0, &Itig F) * S,, r?Sardlcss of fhc value of S.(O) : &. 50 the tow \\‘a”~ 

num’x: x Io,n:- tlia,’ -ni.z b-h.,“’ --A-.‘L--.L mr of tx5y!mw is sovcrncdhs&~ zeroes s: a(a) -- 

wit!> posi!ivc slsi). Si!nilxly. rcroc~ 0: cf:) xil,h nc:;ativG s!3iF govern 7!1e large 

WZYC rrum5cr 0: Awt disrmcc 5zhClviar of !x5uI:~i)i~. Thz z~roc‘s of aw are the ___--____. --_---__-_-- 

key pbpical nbjccts, not the vases 0,: S, t!r~ rcnormalizcd Rcync4ds’ number, or the 

v~luc of go, t:w non-stxhastic o: 5xe Rcyn?lds’ nwnbcr. 



If we knew u(g) perfectly, we would know a great deal indced.abwt the 

velocity correlation functions. Probably kno;sin~ :($ is cq:livalent to solving the 

full theo:y; at that point the renormalization group is merely a consistency check 

on the solution. Howover, if we knov a(p) wen in perturbation theory in g&the 

relevant zeroes g, occur at s.nall g, then we have a consistent procedure for 

determining the behavior of the velocity correlations. 

We can now deterinine the functions .4(d and B(g) in perturbation theory by 

calculatin;: the grapl~s in Figures 5 and 6 and 1ro.n the renormalization conditions in 

the previous section evaluating Z, and Z . 
Y 

The calculation is laborious and follo;vs 

directly from the graphical rules. \Ve find at D = I, which will be enough for ow 

and 

To find h(g) we note 

I 

D=U 

ON~lO~ZT =A & 
N ( ) 

2 
. 

g =“$wN 
D-014 

.= (-+ -$j-P NDAf4 # 

(S2) 

(83) 

w 

@5) 

A@ = +cg, F,u) [ ~Io,zy.yuN&lo:,Z”] ) (86) I\’ a + 



so evaluating the term in braces at D = 4 we have for nd 

Akl = -;g+&g(&)2 ; c.4-d . 

If E is small we will find g < Kso neglect of higher powers of t or g is accurate in 

(X7). For B(g) we have 

w = -f6(ig2 . 

At this stap,e of approximation ok) has two zeroes 

q = 0 $1 =-f; negative for D c 8 , (89) 

81 

and 

’ $1, = * ; positive for D CS . ($10) 

The zero of a@ at gf = 0 with negative slope is almost a “kinematic” feature of 

the dimensional analysis of the perturbation series in Y, (or I$ It means that & 

large wave number the cfiective Reynolds number is zero. More accurately, ?.s 

C+mwcfind 

&lo: 0 + xc - d4 
(91) 

with X a constant which may bz found from integrating (77), and the effective 

viscosity 

;:-log <I r. VF, (92) 

At large wave number the non-linearity is rflcctively su?pressrd. TO 

dctcl-mine the behavior 01 the dn,nd we rnusl trke into itCC*unl thC pO%Ys Of g 

which prc!rwltiply il. We’ll do that below. 
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The zero of ok) at g = g2 with positive slope is a I*JSS obvious feature of the 

the*:). As f,* 0 we explore the Ion: wave length structure of 3 (“J”)C $,...). 

There &!o: 0 = x2 and 

a-log 5) = ur. I’l-Rkz) . (93 

In the next section we will investigate !he consequences of these zeroes in 

O(p). 

V. lMPLICATIDS.5 OF THE ZEROES IX a@ 

Ia this s:ction u’: will exp!ore the consequences for the large and small wave 

number k>avior cl the velocity correlation functions e f”*m) with s,xci+I attention 

to the 2,“d order correlation 4 (2,O). First we study the zero with pxitive slope at 

6 = 5 11 an expsnsion about D :’ 4 we learned above that s2, or strictly speaking 

the correct expansion parameter for all of ox series g2/4n, is small. Here we don’t 

assur:e ii is small, so its value will be calculated by other mean% Instead we 

imagine for no\\’ !ha: the renormalized Reynolds’ number is precisely 82. The results 

we derive tiis \ray v:ill be approached cs limiting values +s$+ 0. 

Lb.--n g = g2, of course ok,,) = 0 and&log C) remaix fixed at g2. This is the 

ori:ir: of t3c ram: infrared stable point for g2 Then v:e have for ;(-I32 C) the 

cxpressi33 (93) exactly. From the solution (76) of the renormalization group 

egatizn It !z!!or:s that 

4(‘*m)(,; I+ i, ,,, x2, kN2) = ~~m)(it,~ i, i,c 
Ill-D, 

, ~.~.k~‘) x 

[(m-“):2-D) + ZD(l-“)]:I l (I”-“)/(I-D2)il + 02/2) 

x t . (94) 
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with B2 = U(g2). AI1 rhc eflccts of the interaction are !o-ratcd in the Bjdy&&nce 

of the < (or ci) depzndzncc The re:naiain~ pcwc~r oi ; d%p&de?cc xe strictly from 

dirnewiclnal analysis. Usinlg the dimensional analysis rc~>lt for 3 hm) show in (70) 

we may write 

,(n,ml hai, k,ki,v,g2,kNz) = Y 
I-2mck 

IN 
2) I?-n-3m + D(l-n)l !i x 

): ((r-n-n):2-U) + ZDCI-n)) + I/(1-B,)l (m-n)!l+B2/2) + I-2m ) 

where we ha\,: singled wilt any one of the frcq~cncies and called it u and any on-0 of 

the WSY nu;n5xs and called its length k. F, m is J dimensionless function of its 

argtmwnts; tensor indices are stil1 suppressed. 

For n = 2, m = 0 05) gives us a result for 

o(j2;o) (. ,,it v, g2, kN2) = t@ ~2*0)b, k*,” , s2, k,‘) (96) 

which reads 

p)(& -P , v, g2, kN2) = vkt,? 

\?e CJII USC this resuit ia the delinition of EC<), Ec,uatlon (I), to Iearn 

D12 . 
c(k) = ~~&$-- k’)-l i&$ (2~c)(9, ;2,., I is29 kNZ) (98) 

-I/l-B2 
jdxF(a, g2) . (39) 
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Write l/(1-B2) = 1 + D2/(1 - B2), and WC have 

Eck) = (D-IXIn)~: “ZkN( “;) 
3-Dtp 

--x72) 
jddxF(x, g2) (loo) 

where 

p i ZB,/(l-B,) = - 22 
9 ’ (101) 

in an expansion about D = 4. This is the result quD:ed in the introduction. 

To find the behavior of O(nJm) in the k * -regim- -, It isconvenient to extract 

the factors of -f R-m in (59) and study the renormaliz+tion group equation for 

&de This leads to 

o(n,m)&i, oi,v, g, k,2) _ Tn-m(k2~D’4r2-n-m)~vk2)l-(3n+1.1)/2 
L 

x 

- El2 0 ,) ,$ 
IN 

usiq the same analysis as before. So for a 2,O) 

* (2,0)(,2 2 
,w,v.0N2) = TV 

(102) 

(103) 

m) i “$D;;E ,,2 kD-3 y- , dx+.+-)-“21 . (104) 

Since F(n,g) = f,(s) * f,(x)22 l . . . . WC h3ve 

E(k) kym kD-31co + c,k” + . ..I (105) 

andarn=3 

. 
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E(k) 
=I 

LC =O + T + .-. 

with co, c, some consta-Ss. These constants and the fuaclion F are calculable in 

principle using pzrturbation tlrzory to evaluate G (2/-v 
. Furthcrmorc, pertabation 

theory is accurate as k + a because the effeciive Reynolds’ number b-haves as 

k-c I4 

The spxtrum func:ion E(k) is very strongly linked to the behavior of rca, the 

fourier transform of th: mixing function in (16). From Novikov8 we see fhst Ee, 

the dissipative energy loss 

g = IdDk It:, (107) 

50 lf I’(!!) .-kv2’ for large k, then X >D/2 for 8 to exist. Otlr example of 

r(k) = constant which has b:en treated et len$S gives in!inite g because it 

continually pxnps energy in at every uavcrun5er uniformly. The connection 

between EM and T(k) for large k is also direct: 

E(k) - k D-3r(k) 
k+m 

(I 08) 

Ln a subsequent paper WC s!wll study in detail the miring force wit!1 correlation 

Nfi = (1 + k2/rn2) 
-1 

, 1 >DI2 (IO?1 

which will give finite P and a p~ssi>lc regime whcrc the #olrno$rov spxtrun is 27 

correct. The k +O bzhwia: of (103) will nat be afie ctcd by this change of forcing 

function. 

If for some reason we were iatcrcstcd in tcrb;!znt mo:irn at 0 = 4, we could 

hm) use the rena,malization grv,p to cva(aatr the k + 3 limit 0: 0 but WC 1~~s~ the 
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abilily to sttidy the k -t m regitnc since o(g) : ‘L,g3 + o(g 3, 0, > 0 for D = 4. 

Equltian (100) for the k +O limit of EPA) is chnn:ed from k 
D-3-P to kD-3x(lo=- 0 

arith.ns o: k/kJ. 

VI. SUMMARY AND DISCUSSION 

We have analyzed in this paper the stochastic field theory relevant to 

turbulent motion of a fluid usin: tSe renormalization group IO provide a non- 

perturbative tool for studyin,: the effect of the non-liwarity in the Navier-Stokes 

equation. We foJod it possible to cast the stochastic field theory 01 the velocity 

field, vj(T, t), into a familiar functional intczral fo:m by in::oducing aa “anti” 

velocity field, Tj(T, t), and a stochasticity parameter, a, measxing rhe deviation 

from dtterministic behavior of the fluid. Ve did not discuss thy stochasticity 

parameter at any length in this work. but it seems quite p!ausible that it 

determines the presence and importance of turbulence in fluid mcltisx Certainly 

the Reynolds’ number which governs the importance of the nsa-!Inear, intertial 

terms is significant, however, if a +O, then no fluztu3tions, i.e. no turbulent 

motions, are present. 

Fro,m the generating functional for velocity correlation fwctionr WC derived 

a p-rturbatim theory in the Reynolds’ nu~mber for thxc correlation functions, and 

wed th: renormalization group to provide a w.mmation technique for that 

perturbztio> th?oiy. This caabled us to find the la:ge and smzll wave n>~mber 

behavior of the many point velxity correlation functions. Pa:ticular interest has 

+ 
been focused on the two point velocity correlatix <vj(x, t)vp(j:T)‘, and we 

exhibited the bcSavix of it in some detail. Indeed \\‘e found th.xt for thz theory 

with uniform mixing i;l wave nambcr and frcqucncy sp.vc thz~t I!IC e:~c:gy spzztrum 

function I?(:;) commonly drlincd in turbxl?nce thc~:). brhJvcr, in thicc space 

dimensions, as a cowfant lor 1x1:~ k (see the comn:n~s after Tq. (IO/)) and as kmP 

with p a wnall, ncgarivc runbcr for sru11 k. 111 an cxpmsion abcv,t D z 4 
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dirnensi.on:, csplzincd il the text, we found p = -2(4-D)/Y, 50 p = -219 in three 

dirnensi.>ns. 

A key iwx in the tllearj as prescnl+d hzrc is rhe nature of :he driving fo:ce 

for turbulence. It enter; the Lagrangian density as a tcrmb 

~&&, Ta, = - !;;$ 1) j dDydr r jk< _ ;, t _ “Tk (;, T) 

when the external force ia the Navier-Srskc- , equation is taken to be a Gaussian 

random field \rirh zero meen and 

djG, t1r %‘O, O)> = “I r’x: 1) . 

In this paper we studied rhe forcing Fanction 

I-. G t) = Y2d. II ’ tn *!x)s(t) v If. 

partly fro-3 the point of vie-ii of simplicity, partly because it see.ms litie a useful 

point to begin the rcnxmzliration grou? axlysis of turbulent motion. Another 

interestin forcing fuxiion wx:d b-2 ox which turned on at some time to a,-,d 

turocd off at some time tl. The study of the correlation functions at,large t ) t, 

would illulninate the issxs involved in 1:~ ds:zy of turbulence. This is likely to be 

a more prr;tiCa! qwstion t:13;1 tS,e oil=5 s:u-li?d here. 

Sevzral fixture prOjxYs ore s”~:cit?d by thr te:lmiques develop-d here: 

1. Use 111: rcna:n:a!izati~~ ;:OIIP xo srdy ~lic *ON;CY~C~ depzt>d:ve of the velocity -- 

co:rcls!io:i fu:lctiox. This iz str;7iz:ltlorxxd usiq; :iz dimenji3>z: inalysis and 

rello:ln::li.~.1;;3iI gr311:1 ~~.ill*ii~~‘i disCus;zd Lx~ve. 2. USC tSe tcc!?niqJ?s dzvclop-d 

i.a high enr;y p!,y\l;s I3 ?O derive t:;~ fur:;isns Qn m en$ Fn ,” ora- the infrared 

stdbfc %L’:o~s a! a(;). Thi; ?rovid:.; (‘11 2 :ii;S t!c renai,+ avail.lb!c information 01 
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the vckity correlation :unc:ians. 3. There is on? indx, which WC called 0, which 

drtcrmine: Cx k * 0 behavior of all velocity correkion funztiox. SC studied it in 

an cxpansizn about D = 4 spxc dirncnsixa xd to first order :ound P: - 2(4 -!?)/S 

Sxh indicts may be studied by the equivalent 0: hi2.h tempcrarure exp~~iora as 

employed in solid state physics. Thes: expnrior!s are straightlorward in concept 

albeit te<ixs in practice. They arc usually rrmzxkably accura:e. 4. Finally some 

attentim sSauld be paid to the px.sibi:ity of e!x?eri;ncntally determining a value for 

the stochlsticity pxameter a which will ent+r in a non-trivial fashisn into the 

cwrelatbn Junctions. Several of these proj-cts ere now in progress and will be 

reported 02 in future articles. 
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Fig. I: 

FIC.LII:C ChPTKX4S 

The two point v4xity corral-:i>n furcti.mr (~ropa~arors) in 

the abscncr of non-fixariticr. Thcsc ax used in constructing 

the perturbation series in Rcynalds’ number. 

bj fi, = 6, l-kjkP /k2. 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

Fig. I: 

The lusiu> verta ior the non-:incxity in the Navier-Stokes 

equation. 

An eram~lc of a perturblti33 t!lcary graph which is zero 

becaurc of the retrrdrtion in thz Lmction F” in Figure 1. 

The lowest order terms in the T.eynslds’ number rx$ansion of 

the veloci:y-vt!acity cxrcIa:i31 !sac;ion. 

The lowest order ter.ms in the ZeynoIds’ number expansion of 

the velo:it,-anti-vcfyrity corrc!a:ion funcrion. 

The lowrst order te:zs iq th- - Reyaw!ds’ number expansion of 

the fusion vortex. 



Substitution for paragraph at bottom of page 18: 

At this stage an aside is in order. By looking at the time dependence 

of the decay of homogeneous, isotropic turbulence in the final stages of 

decay one can learn directly about rM(k2 = 0). There are two competing 

hypotheses about the behavior of II(O). One is given by Batchelor,l Section 

5.4, where he argues that the analyticity of the velocity correlation function 

at k = 0 requires 

(75) 

near k* = 0. This has been criticized in detail by Saffmann’ who argues 
. . 

instead that the analyticity assumption is more properly made about the 

~vorticity correlation function. Then one has TM(O) finite and, furthermore, 

an invariant of the motion. An additional argument in favor of Saffman’s 

conjecture is that~ LV(0) f0 would imply, for long times into the decay 

period when the degrees of freedom of the fluid had time to come to 

equilibrium after whatever mixing had occurred, that the energy spectrum 

E(k) behaves as kD-’ which one expects from equipartition. It is important 

to note that there is a difference between E(k, t) in non-stationary 

turbulence and E(k) in the stationary case. It is E(k, t) which for long times 

after the mixing behaves at k+ 0 as k D-1 when $,,(O) f 0. E(k) has an 

additional factor of k -2 and behaves as E(k) fl kDm3 when rM(0) f 0. For 

generality, however, it is easy enough to consider a behavior like (75). Then 

N=IatD=3,andi(u)+m asu+- or c+O. 

Add to references 

9 P.G. Saffman, J. Fluid. Mech. 27, 581 (1967). 



possible disagreement with that. The issue, then, is the behavior in the 

intermediate regime where k is large compared to 0 or ko, but still outside 

the deep dissipation regime. Here the interpolating formulae derived in 

Section V of this paper are the tool to explore this region. 

As to the behavior of 9” changing as R. changes, I cannot agree. I 

recommend the referee explore the field theory of a scalar field with A,@ 4 

coupling in D dimensions. The nature of perturbation theory in X0 changes 

at D = 4, regardless of the size of lo. For D < 4 two phases of the theory 

are possible. One is connected to perturbation theory and has a dissipation 

region where as k+ m, ieffective + 0. The other has X effective +- as 

k + -. For D 2 4 only one phase exists. The presence of two phases is not 

dependent on the size of X0. The turbulence problem is much the same. 
P 

where, however, we are fortunate in having a physical boundary condition to 

choose the appropriate phase for D < 4. That boundary condition is the 

existence of a dissipation region where VV 2vj dominates v’ Vvj and the 

effective Reynolds number goes to zero. 

(2) On rereading the paragraph beginning on the bottom of p. 18 I can 

see how it should be rewritten for clarity. I enclose an altered paragraph to 

address that. 

I think this should make it clear that my preference for rM(0) f 0 has a 

sound physical basis. 

One last comment which pertains to the referee’s statement about E(k) 

decreasing as IM(k). For very large k, i.e. in the deep dissipation region 

that is what physically one would expect some transport by ;*Vvj has 

become unimportant. For large k but still less than n-1 there is a 

combination of effects consisting of energy transport by ?-Vvj and 

decreased input due to the fall off of TM. It seems to me possible, though 

not yet demonstrated that a balance yielding a Kolmogorov spectrum could 

arise, though I do not expect it in a neat analytic sense. 



Reply to the Referee on “The Behavior 
of Homogeneous Turbulence Mixed at Long Wavelengths” 

I appreciate the long and careful review given by the referee of my 

~paper. I will try to address the two important points he raises: (I) a 

question about the behavior of the effective coupling as one varies the bare 

Reynolds number, and (2) the phrasing on p. 17-19 about $&O). 

(1) The renormalized Reynolds number, g, is an infinite series in go, 

the bare or unrenormalized Reynolds number. If the function A(g) has a zero 

with positive slope at g = g, and a zero with negative slope at g = 0; e.g. 

A(g) = - $ g + a g3 , a> 0, 

> 

as in the theory of turbulence, then one can solve for the g(g,) relation by 

using the boundary condition that when go + 0, g + 0. The relation, good at 

the same level as A(g), is 

g* : go2 

1 + go2/g,2 * 

From this one sees that as the bare Reynolds number go ranges over 

O(go < -3 g ranges from zero only up to gl. The effective coupling 9” 

reflects this behavior. As k + -, if g* 0 for any go, it goes to zero for 

every go. 

I believe there is an important physical point to be made, and perhaps 

that is what the referee is driving at. k+ - literally means leaving the 

inertial range and moving into the deep dissipation range where k >> n -1 = 

(c/v’)“. In that range, whatever the bare Reynolds number for D ~4, uV2vj 

will dominate the inertial term. Perhaps I am wrong, but I don’t see a 



In first paragraph on p. 21 change first sentence to: 

For the circumstances mentioned above l&(k’) = k2 for small k, N = 1, and 

we see that G(u) is zero at both ends of the wave number spectrum for 

D = 3. 


